
1 Introduction

The recent development of computers has opened up new
opportunities in education. Today, in computer assisted edu-
cation modern multimedia technologies and the Internet
are used to create place and time independent learning possi-
bilities by using a uniform framework. The present form of
computer-aided learning, or e-learning, is a result of continu-
ous development. Nowadays most of the existing e-learning
systems and courses are conformed to one of the widespread
e-learning standards or recommendations, so the learning
systems are independent of the learning material, and are
interoperable with each other. The key to the popularity of
e-learning is the richness of multimedia contents in the
courses, and the extensive accessibility of the Internet, where
these materials are usually presented.

Due to the development of mobile devices such as PDAs
(Personal Digital Assistants) and smartphones, mobile Inter-
net access has become more and more common, and thus a
demand for mobile e-learning systems and courses has arisen.
However, most of the existing learning packages were de-
signed to be run on PCs. This means that these materials are
usually rich in multimedia contents that fit the size of a typical
desktop computer’s display. Also the formatting and wrap-
ping of the texts are designed presuming this display size.
Although mobile devices can generally display these courses,
real time shrinking and displaying a video with fine resolution
and good quality to a small display requires more computa-
tional power than that is available in these devices. There is,
therefore, a need for specialized learning packages for mobile
devices. Most of the course editing and management soft-
wares have some support for PDAs or smartphones, but this
only involves limiting the displaying area. The creator of the
learning package (let us call him the lecturer) has to pay at-
tention to the size and quality of the multimedia contents for
the best playback compatibility; he has to resize or reencode
the images and videos with another program. Since the lec-
turer is usually not a computer specialist, it would be ideal if
the learning content development system would pay atten-
tion to these properties of the content, and it would adapt
them automatically to the given device. As the generation of a
learning package takes much time, and there are already

many existing courses designed for PCs, there is also a need
for proper playback of these courses on mobile devices. To
achieve this, automatic adaptation is required in the e-learn-
ing system: after the construction phase of the package and
before delivery. To solve these problems, our goal was to ana-
lyze the possibilities of adapting courses to mobile platforms,
and to develop a system capable of this adaptation.

In this paper after introducing the structure of the most
common e-learning systems and the quasi-standard SCORM
(Sharable Content Object Reference Model) [1] recommen-
dation, we review and evaluate the adaptation possibilities.
After this, we present two systems that we have implemented
to solve the problem of adaptation. We finish this paper by
discussing the evaluation of these systems and presenting the
possibilities of their further development.

2 Fundamentals of e-learning
The very first e-learning courses were developed together

with their delivery system; therefore, both of them should
have been changed if the learning content had been changed.
In addition, there was no way to transfer a learning content to
another system, so in the early days e-learning was not very
flexible. A new impulse was given to e-learning when inde-
pendent organizations worked out recommendations for the
structure of learning systems and for cooperation between
the delivery system and the course itself.

The most commonly used recommendation is the
SCORM, which was created by combining different widely
used standards and recommendations. According to
SCORM, three parts of an e-learning system can be sepa-
rated: the course, the course editing module, and the runtime
environment. This is shown in Fig. 1. In an e-learning sys-
tem we talk about the Learning Management System (LMS),
which is responsible for displaying the learning content,
for authenticating, and for tracking the user’s progress; the
Content Management System (CMS), which manages and
generates the learning packages; and the content itself. Most
commonly the LMS is an on-line, web-based system. After the
login, it provides different levels of access to the courses
according to the user’s rights, which can scale from basic
read-only access to system administrator privileges. The CMS

48 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 4–5/2007

Developing E-learning Courses for
Mobile Devices
R. Szabados, K. Sipos

The recent and rapid development of mobile devices and the increasing popularity of e learning have created a demand for mobile learning
packages and environments. We have analyzed the possibilities of adapting the existing content for mobile devices, and have implemented
two fundamentally different systems to satisfy the demand that has arisen. One of the systems creates e learning courses from existing
materials and adapts them to the specified platform (this system realizes the functionalities of the Content Management System). The other
system is a modified version of the Moodle Learning Management System, which can adapt existing courses right before displaying them.
This paper discuses the fundamentals of e learning, the design considerations and investigates various methods of scalable video coding.
Finally the realization details of the two systems are presented.

Keywords: E-learning, SCORM, mobile devices, adaptation of learning packages, video coding.

is usually available off-line, and provides course generation fa-
cilities. Most of the CMS programs support the creation of dif-
ferent e learning package formats ranging from off-line
courses (which can be distributed on CDs) to SCORM con-
formed packages.

The SCORM specifies, among others, the structure and
content of a learning package. A SCORM package – i.e., a
SCORM compatible learning package – is made up of in-
dependent learning objects, called SCOs (Sharable Content
Object), to enable the reusability of the learning contents
already made. The hierarchy of the course is created by orga-
nizing the SCOs into a tree structure. SCOs are like chapters
and subsections in a book. The lowest level SCOs are built up
of HTML pages, which actually contain the learning materials
such as text, picture, video, etc. A learning package includes,
among others, these HTML files, the multimedia files, and a
so called manifest file. This latter file contains course-related
metadata, such as the language and the logical structure of
the course, and the location of the files appearing in the
course. The name of this file must be imsmanifest.xml, and it
has to be placed into the root folder of the package, because
the LMS displays the course relying upon this file.

According to SCORM, the adaptation of the multimedia
content can be realized in the CMS during the construction
of the package, and also in the LMS during the presentation
of the course. The two solutions offer different kinds of
adaptation. In the case of adaptation during course produc-
tion, the learning package will be compatible with all of the
SCORM-conformed LMSs. In this way it produces platform
specific SCORM packages, which contain the multimedia files
adapted for the specific device. On the other hand, these
packages can only be displayed appropriately on the specified
device; therefore, different learning packages have to be
generated for different platforms. To support the multiple
package generation of the same course, the lecturer only has
to name the platform to which the package is created, and the
CMS takes care of all the rest. In the case of adaptation in the
LMS, all SCORM conformed packages have to be supported,
including the existing courses designed for PCs. In this sit-
uation the learning package contains the multimedia content
only once, and the system has to adjust it to the device before

delivering the package. This way the lecturer does not have to
focus on the properties of the learning material. Since the two
ways of adaptation grant different advantages, we decided to
implement both of these methods.

3 Design considerations
Content adaptation is necessary because the different mo-

bile devices have different technical capabilities. During the
design of the systems we considered the following properties:
� Bandwidth: when using mobile devices, the available band-

width can be relatively low, or the quality of the connection
can be poor. An example is the GPRS based (General
Packet Radio Service) Internet access. This may cause
problems when trying to send higher quality or longer
videos over the network. This problem can also occur while
using a notebook.

� Computational power: PDAs have relatively slow CPUs,
which can also cause problems during higher quality or
longer video playback.

� Screen size: The small screen size causes problems on PDAs
or smartphones when trying to display large images or
videos. When the device displays the images in full size, in-
telligibility decreases because the user has to scroll on the
page. Also, in the case of large videos, real-time shrinking
requires much computational power.

� Animations: The electronic learning courses are popular
for being rich in vivid multimedia contents; therefore, the
presence of flash animations in these courses is common.
However, this can cause problems if a device cannot play
these files.

As the range of existing mobile devices is quite wide
and they have rather different capabilities, we defined three
profiles corresponding to three common device types for ad-
aptation in our systems. For desktop computers we defined
the “PC” profile presuming big screen size, high bandwidth
and a fast processor. This is the base profile; no adaptation
is necessary for this. We defined a “notebook” profile for
computers with low bandwidth Internet access. Finally, for
the “PDA” profile we assumed an average PocketPC with
320×240 pixel screen size, low bandwidth connection and a
slow processor. As nowadays smartphones have quite small
displays, and extremely varied capabilities, we omitted the
“smartphone” profile for now. However, the realizations of
our systems provide an easy way to insert new devices later on.

According to the considerations mentioned above, we
reviewed and evaluated the possible adaptation methods of
the following multimedia contents:
� Text: The only reason for adapting text is the small display

size, so it would be essential solely for the PDA profile. As in
SCORM the course pages are HTML files; the browser can
automatically adjust the text to the width of the screen.
Thus, no other adaptation is required.

� Picture: As real-time resizing of an image is not so difficult,
and their transfer also does not require high bandwidth,

in a reduced size can cause a very congested image full of
small, unreadable parts. That is why we decided to shrink
the image to the display size of the device, and also to leave
an opportunity for the student to see it in full size. We
ensure this by changing the original image to a reduced
version that is also a link to the original-sized one.

� Flash animations: The lack of appropriate animation
player softwares would be the reason for adapting anima-
tions, but there are implemented players (for example the
Macromedia Flash) for PDAs too; therefore, we do not deal
with this issue any more.

� Video: Probably the most important problem is adequate
adaptation of video files to the given platform. To achieve
this, we have to consider the available bandwidth, screen
size and computational power in all of the profiles. No ad-
aptation is required in the PC profile. In the notebook
profile the bottleneck is the low bandwidth; hence, the
video has to be reencoded to cope with this. Adaptation is
also necessary in the PDA profile, because of all the con-
straints mentioned above.

Due to the large number of different video codecs, there
are numerous ways for video adaptation. The storage of video
streams requires large disk space, so we tried to choose a solu-
tion that does not require the multiple storage of the same
stream. In the case of adaptation during course generation,
this is an unreachable goal, because the SCORM package has
to contain all the relevant multimedia content. Thus, the
video streams have to be stored in each learning package. In
this case we tried to find an effective video coding method,
and decided to use the MPEG 4 [2] codec, due to its compre-
hensive support and effectiveness. In the case of adaptation
just before displaying the content, our goal is achievable
because the SCORM package has to contain only the best
quality video stream, and the LMS can adjust it to the appro-
priate quality. In this case we can also use coding and delivery
methods that require special server applications, by inte-
grating them into the LMS.

The simplest way of adaptation is to encode and store the
video stream for all of the profiles, as we have already dis-
cussed above. However, with this solution the needed storage
capacity is huge, and the user has to wait for the whole file to
be transferred to his device before starting the playback.
Some PDAs do not even have enough capacity to receive the
whole file, so it is not playable at all. The streaming transfer
method is appropriate for avoiding this problem. This deliv-
ery method is based on a continuous data flow transmission
that is decodable immediately; therefore, the user does not
have to wait for the download to finish; the playback can be
started after a short buffering time. Traditionally, streaming is
a broadcast transfer method, but there is a special form of
streaming, called Video on Demand (VoD), that sends out the
stream only on request.

Using streaming specifies only the mode of the data trans-
fer, but the actual encoding, and thus the storage capacity
needed, can be various. Storing multiple video streams using
the MPEG-4 codec, and transferring it with VoD is an easily
realizable mode of adaptation in the LMS, so we compared
the other emerged solutions to this method of adaptation.

One of the possible solutions was to store only the best
quality video stream, and to reencode it real-time for the

other platforms only on demand. This adaptation requires
less storage capacity, but much more computational power,
which seriously limits the number of simultaneous accesses.
This is why we discarded this idea. Another solution is to use
multiple bitrate video streaming, which involves packing sev-
eral video and audio streams with different bitrates into one
file, and to use a special program to select which stream to
transfer to the user on demand. To open a video, a single
hyperlink is enough; the server automatically chooses the
proper stream according to the properties of the Internet
connection. This solution is not suitable for adaptation in the
LMS system, because the stream choosing algorithm consid-
ers only the bandwidth, so we cannot adjust the video to the
screen size of the device. Furthermore, the required storage
capacity is not significantly less than it is in the solution
applied in the CMS.

A way to reduce the needed storage capacity is to use a
scalable video codec [3]. There are two different realizations.
The first one uses layer-level, the second one bit level scal-
ability for improving the quality. The main point of the
layered scalable video coding method is to create different
layers of the video stream: a base layer and some enhance-
ment layers. The base layer requires small bandwidth, but has
poor quality and occasionally low resolution. The enhance-
ment layers are for improving the quality or resolution. For
decoding the video stream, the whole base layer is essential,
and according to the available bandwidth and the desired
quality, additional enhancement layers are transmittable. The
more enhancement layers are received, the better quality the
video has. The disadvantage of this method is that the quality
improves only if a whole enhancement layer has been re-
ceived, otherwise it does not improve at all.

The enhancement layers commonly improve only one
property of the video stream. These properties can be seen in
Fig. 2. The spatial scalability controls the resolution of the video
stream. Decreasing the resolution results in smaller picture
size, which is a disadvantage when the video is played on a PC
or notebook, but it is favourable when sending the video to a
PDA. Temporal scalability modifies the number of frames sent
in a second. The fewer frames are sent, the smaller the trans-

50 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 4–5/2007

Fig. 2: Different ways of scalability

mittable stream is. However, decreasing it too much brings on
discontinuity in the video, and it becomes less enjoyable. This
gives a solution for the low bandwidth problem, but not for
the small screen size; therefore, this kind of encoding is good
for notebooks, but not for PDAs. Picture quality scalability (also
known as rate scalability) reduces the quality of the frames to
achieve lower bit rates and faster transmission of the video
stream. Just as in the case of temporal scalability, it is benefi-
cial for adapting the video to notebooks, but this does not re-
duce the geometrical size of the video frames either; there-
fore, leaving the problem of small screen size unsolved in the
case of PDAs.

From the above mentioned properties of the different
kinds of scalability, it is clear that none of the scalability
methods is able to fit all of our requirements by itself. There
are existing combined scalable video codecs, as well. These
achieve the best quality on a specific resolution first, and
switch to higher resolution only after that. The server pro-
grams consider only the available bandwidth while selecting
the number of enhancement layers to be transmitted. In our
case this behavior would cause a PDA with high bandwidth
Internet connection to receive the video stream in too fine
resolution.

Fine Granular Scalability (FGS) is a special form of scal-
able video coding that realizes bit-level scalability. In FGS only
one enhancement layer exists and all of the bits in this layer
improve the video quality; as a result the enhancement layer
can be trimmed at any point; in this way, the transmission can
adapt well to the available bandwidth.

In the LMS, with scalable codecs the adaptation for the
available bandwidth could be managed, but we would have to
store multiple streams for the different resolutions. For the
defined profiles it means two streams instead of three, which
would also significantly reduce the required storage capacity.
The only implemented FGS codec that we found was the
MPEG-4 FGS reference codec and server software realized
by MoMuSys (Mobile Multimedia Systems). [4] As it was cre-
ated as a reference implementation, the functionality of this
program was quite limited and ineffective. Since the imple-
mentation of this reference software, the MPEG-4 community
has recognized that the MPEG-4 FGS may not be efficient
enough; therefore, the community is now working on a
new MPEG-4 based scalable codec, called the AVC Scalable
Extension (Advanced Video Coding), but this is still under
development.

Our goal to use a scalable video coding method failed due
to the lack of appropriately-operating codecs, so the imple-
mented solution was the simplest way of adaptation that we
used in the CMS as well. For the purpose of reencoding
the video files and Video on Demand, we searched for an ex-
isting program, and we decided to use the open source
program called VLC (VideoLan Client) [5], which provides
both functionalities.

4 How to adapt in a CMS
In this section we present in detail our solution for adapt-

ing the course by modifying the CMS. At the time we started
this project, we looked for existing open source software to use
as a start-up for both of the realizations. That was how we
found on a website of the Warsaw School of Information Tech-

nology the code of SCOmaker [6], which we used as a starting
point for our program.

SCOmaker is written in the Ruby programming language.
In the state we found it, it was not a completely working soft-
ware. It was able to build the hierarchy of the course (from
SCOs) and assign the appropriate pages to the appropriate
SCOs. Navigation within the pages was also possible, and it
generated the SCORM 1.2 compatible manifest file as well.
On the other hand, the lecturer had to modify the program
code to define the hierarchy, and also it was not able to find
the resources. This means that the original software did not
fill the pages with content; it only created empty HTML files.
Furthermore, it was not able to adapt the courses to different
platforms – like most CMSs, it created learning packages for
PCs. Also, originally the lecturer had to run four programs to
create the learning package.

We have modified the SCOmaker so that it is able to find
the resource files, and from them create HTML files that are
not empty any more, but contain the learning material. At this
time, raw text files (.txt files), web pages containing only
formatted text (.htm, .html files), pictures and illustrations
(.bmp, .jpg, .jpeg, .gif, and .png files), and videos (.avi, .mpg,
.mpeg, .mp4, and .wmv files) can be used as resource files.
Another goal was to be able to create the learning package
for different platforms, such as notebook with poor quality
Internet connection, or PDA. While designing the software,
we tried to keep in mind that we are creating a program that is
going to be used by people who are not computer specialists.
This is why we tried to keep the user interface as simple as
possible. Thus, the lecturer only has to modify one tag at a
given place in an XML file to choose to which platform he
wants to create the course. Then he has to run only one pro-
gram (instead of four), and he does not need to change the
program code to define the hierarchy, he just has to create
folders and copy the source files into them.

Because the original software, in the state we found it, was
only able to run on Linux platform, we decided to keep this
characteristic, and port the program to Windows later. Also,
though it was not the latest version of the SCORM recom-
mendation that the SCOmaker implemented, we decided
not to modify the SCORM compatible part of the software,
because this is the most prevailing version today.

Now let us overview the operation of our software. To run
the program, two parameters have to be given. One is the
path of the folder containing the course hierarchy; the other
is the path of the configuration file, called config.xml. This
file contains the parameters needed by the program, such as
the path of the template HTML pages, where to put the
created learning package, etc.

First the configuration file is processed. Originally, the lec-
turer had to hard-code the package hierarchy into one of the
program files. We modified the program so that the lecturer
does not have to modify the program code. Now he only has
to create a folder structure that represents the hierarchy of
the course (SCOs and pages), and copy the resource files into
the corresponding page folders. The resources are placed
on the pages in alphabetical order; therefore, the lecturer
has to name them accordingly. From this folder structure, a
temporary file is created, which later is used to create the
imsmanifest.xml file that is mandatory for every SCORM

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 51

Acta Polytechnica Vol. 47 No. 4–5/2007

package. To achieve adaptability, we placed a new tag into the
config.xml file, so that only the name of the profile has to be
specified in order to adapt the course.

Now let us see how the empty HTML pages are filled
with content. The resource files belonging to the appropriate
page are collected from a temporary file, processed and in-
serted into the HTML page according to the extension of the
resource file.

When inserting text into the HTML page, the only change
made is that the “\n” or “\f” (new line, new page) characters
are replaced by the “
” HTML tag.

In the case of pictures and illustrations, if no adapta-
tion is needed, the following tag is placed into the HTML
code: “” where #{fname} is
the name and the extension of the file containing the picture
or illustration. This file is then copied to the folder of the cor-
responding SCO. Picture adaptation may only be necessary
when the course is created for PDAs. In this case a PHP script
is called to check if the size of the picture exceeds the per-
mitted maximum (it is 230×300 pixels – the effective display
size of most PDAs), in which case adaptation takes place.
Adaptation means that a reduced version of the picture is
placed into the page as a hyperlink, which points to the origi-
nal-sized version. In this case the original picture and the
picture reduced with the PHP script are both copied into the
folder of the corresponding SCO.

At the insertion of web pages, the HTML code between
the “<body>” and the “</body>“ tags are inserted. As in the
case of raw text, the automatic text wrapping of the browser
provides a proper appearance on small displays.

Placing a video into the course can be done by inserting
the “ Start video ” line
into the HTML code. As a result, a link is placed into the page
with a “Start video” label. If no adaptation profile is given, the
#{fname} is replaced by the original filename, thus the orig-
inal, unchanged video file is placed into the course. If the PC
adaptation profile is provided, the video is reencoded with the
MPEG 4 codec because of its efficiency, but the properties
of the video (bitrate, resolution, etc.) are not changed. The
#{fname} is replaced by the original filename, but with .mp4
extension. If the “notebook” adaptation profile is given, the
video is encoded with a lower bitrate; in the case of the “PDA”
profile, it is encoded with both a lower bitrate and smaller
resolution into MPEG 4 format. In all cases the reencoding is
done by a separate program, and only the new, reencoded
video files are placed into the correct SCO folders. Also the
references in the HTML codes point to these files.

Once the hierarchy, the pages and the imsmanifest.xml
file are ready, the very last step is to create a .zip archive from
the learning course. Besides the fact that SCORM requires
the learning packages to be archived into an archive format
such as zip, jar, cab, tar, etc., there are several advantages of
creating this archive file. The main advantages are: it is easier
to upload one archive file than a folder containing several
files; sending the learning packages through the Internet
consumes less bandwidth, and also the archive requires less
hard drive capacity.

By the modifications described in this section, our pro-
gram is capable of creating complete learning packages with
multimedia contents; also the adaptation of these contents is
done simply by providing a single extra parameter. Such a
package can be seen in Fig. 3.

5 Adaptation in the LMS
For implementing the adaptation during the playback of

the course, we searched for an open source Learning Man-
agement System that conforms to SCORM. Though there are
several open source LMSs, only a few of them are able to dis-
play SCORM packages properly. We chose the Moodle [7]
system because of its modular program structure, the conti-
nuous support and its high level SCORM compatibility.

After uploading a learning package onto the LMS server,
the Moodle system checks the SCORM conformity because
the playback presumes it, and displaying a non conform
course could cause errors. There are two ways to realize this
kind of adaptation. One way is to fit the course to the platform
after the verification by modifying the displaying module of
the Moodle system. The other way is to modify the package it-
self before the verification by creating a new, adapted SCORM
conformed course. Since we had gained much experience of
SCORM compatibility and course generation while develop-
ing the CMS, we decided to implement the latter method.

Besides producing an adapted learning package, we had
to be able to recognize the user’s device, in order to know
which device to adapt to. We also had to solve the video trans-
mission through streaming. Therefore we installed the VLC
program (mentioned in Section 3.) onto the server in addi-
tion to Moodle. For streaming a video by VoD, first the video
file has to be registered into the VoD server. This is done
through a telnet interface, by assigning a unique identifier

52 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 4–5/2007

Fig. 3: E-learning course on a PDA

to the video file. After that, the video stream is available at
the rtsp://servername:portnumber/identifier hyperlink. The
video file can be registered to the VLC at the same time with
the multimedia adaptation, and the hyperlink can also be in-
serted into the course at this time, so no other modules of
Moodle have to be modified.

The used profile depends on the user’s device and also on
the quality of the Internet connection; hence, we have modi-
fied the login screen to grant the user the opportunity to
choose the profile. After this step the program stores the
profile in a cookie on the user’s device. The remaining modi-
fications of the Moodle system were placed into a separate
module.

In order to construct an adaptive SCORM package, it is
first necessary to analyze the whole course. Depending on the
results of the analysis, the multimedia contents have to be
adjusted; the displayed HTML pages and the course de-
scriptor XML file have to be modified. The analysis and the
adaptation of the course are based on the processing of
the imsmanifest.xml file. The adaptation of the multimedia
content takes place when a reference to this content is reached
for the first time while reading the manifest file. The adapta-
tion in the LMS is executed for all of the profiles. First, the
software checks whether adaptation is required. The only situ-
ation when no adaptation is required is when the multimedia
content is an image that is smaller than all of the display sizes
of the different profiles. After checking this, the program
reencodes or resizes the content, if necessary, as described in
the previous section. The names of the newly generated files
are always formed as filename_profilename.exten-

sion. The program registers the video files into the VLC
server at this point and it stores the new unique video identifi-
ers. The identifiers for the same video but different platforms
are formed as identifier_profilename. In this way we
can ensure that similar video file names will not cause prob-
lems in video streaming. After the adaptation of the material,
the program refreshes the manifest file to keep the SCORM
compatibility. During the processing of the imsmanifest.xml
the program collects all of the HTML pages for all multime-
dia contents that can refer to it. When the analysis is finished,
the adaptation of media files is completed, and the course
descriptor XML file is consistent with the new package. After
that, only the modifications of the HTML pages occur. The
program searches for the hyperlinks of the media files in
the HTML codes, and replaces them with short JavaScript
functions. These functions automatically produce the proper
hyperlink using the original filenames (or video identifiers)
and the profile name from the previously stored cookie.

After the above modifications of the HTML pages, the
new package is adaptable, but still SCORM compatible, so it
can pass the verification of the Moodle system. For proper
playback it requires the profile name to be stored in a cookie
in the user’s device, and a VoD server, which provides the
video streams. Because of these requirements, only our modi-
fied Moodle system can correctly display an adapted course.

6 Conclusion
With the use of modern technologies, our lives are chang-

ing. As a result, educational methods are changing as well;
computers are used to aid teaching, and mobile devices to

develop ubiquitous learning. As e-learning is spreading, the
need appears for learning packages to be playable on these
mobile devices as well. To satisfy this need we implemented
two fundamentally different systems capable of adapting the
e-learning content and packages for mobile devices. In this
paper, after discussing the fundamentals of e-learning, we
presented the design considerations and the different pos-
sibilities of scalable video coding. We also explained and
justified our implementation choices. Finally, we briefly de-
scribed the realized systems.

The CMS, that we created for demonstrational purposes,
can create an e learning package using existing text, image,
video and HTML files and is able to adapt these contents
to the given platform. This system, as it is now, meets the
requirements of proper generation of platform-specific learn-
ing packages. The courses created by our CMS were tested on
several LMSs operating on Windows and on a PDA emulator.
The most important property of this system is that the con-
structed courses are displayable by all SCORM conformant
LMSs.

Another way to support the use of mobile devices is to con-
vert existing courses that were created for PCs. This approach
is advantageous, as it supports every package regardless of
the CMS used to create it. Our modified version of Moodle
adapts and displays SCORM compliant learning packages
properly. We used several courses either created by different
CMSs or found on the Internet to test the system. Since dif-
ferent CMSs may apply different ways of inserting a video into
the course, problems may arise during playback. However,
Moodle handled the video files in the packages that we
created with the two CMSs that were used for testing.

To sum up, both of the systems that we implemented are
working properly and are capable of learning package adap-
tation, but there is still room for improvement. The set of
supported multimedia contents and the supported profiles
could be increased. When a suitable, efficient scalable video
codec appears, it can also be easily applied in the LMS system.
Implementing version 1.3 of the SCORM recommendation
(aka. SCORM2004) could also be considered.

Acknowledgments
The work described in this paper was supervised by

Krisztián Németh, and was supported by the High Speed
Networks Laboratory, Department of Telecommunications
and Media Informatics, Budapest University of Technology
and Economics.

References
[1] SCORM 1.2 Documentation, October 2001,

http://www.adlnet.gov/scorm/history/12/index.cfm

[2] ISO/IEC JTC1/SC29/WG11(MPEG working group), doc
no. N4668 The MPEG 4 Overview, March 2002,
http://www.chiariglione.org/mpeg/standards/mpeg-4/
mpeg-4.htm

[3] Wang, Y., Ostermann, J., Zhang, Y.: Video Processing and
Communications. Prentice Hall, 2002.
ISBN 0-13-017547-1

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 53

Acta Polytechnica Vol. 47 No. 4–5/2007

[4] The home page of the Mobile Multimedia Systems pro-
ject: http://cordis.europa.eu/infowin/acts/analysys/

products/thematic/mpeg4/momusys/momusys.htm
[5] The homepage and the documentation of VideoLan Cli-

ent: http://www.videolan.org
[6] SCOmaker:

http://mxf.wsisiz.edu.pl/scomaker/doc/SCOMAKER
[7] The homepage and the developer’s documentation of

the Moodle system: http://www.moodle.org,
http://docs.moodle.org/en/Developer_documentation

Réka Szabados
e-mail: sr556@hszk.bme.hu

Katalin Sipos
e-mail: sk494@hszk.bme.hu

Department of Telecommunications and
Media Informatics

Faculty of Electrical Engineering
Budapest University of Technology and Economics
2 Magyar Tudósok krt.
Budapest, H-1117, Hungary

54 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 4–5/2007

