Influence of Oxidation Media on the Transport Properties of Thin Oxide Layers of Zirconium Alloys
DOI:
https://doi.org/10.14311/1002Keywords:
Zirconium alloys, oxide layers, relative permittivity, sub-linear I-V characteristics, space-charge limited current, zero-voltage, injection and extraction current, power law of current drop, temperature dependence of resistivity, activation energyAbstract
Two batches of tubes of Zr1Nb and of Zry-4W were oxidized for 30 days at 425 °C in steam, and for 360 days at 500 °C in air, respectively. The analysis of the I-V characteristics at constant temperatures up to 220 °C of oxide layers of nearly equal thickness gave an activation energy of 1,3 eV for the grey homogeneous steam samples, and of 0.4 eV for the white surface layer, and of 1.3 eV at temperatures over 140 °C, for the grey bottom layer of the air samples, respectively. The I-V characteristics were sub-linear in the air samples, the current growing less at rising voltages, but staightening to super-linear space-charge limited currents at higher temperatures. The injection currents flowing when voltage was applied did not reach constant equilibrium, but at a bend, continued with a lesser slope. The resistivity was about one order of magnitude greater in air samples and greater in Zry-4W. The relative permittivity was greater in the steam samples and greater in Zr1Nb. The currents of the air samples were greater with Au electrodes than with Ag electrodes.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd