Memory Hierarchy Behavior Study during the Execution of Recursive Linear Algebra Library
DOI:
https://doi.org/10.14311/1051Keywords:
numerical linear algebra, code restructuring, loop unrolling, recursive implementation, memory hierarchy utilizationAbstract
For good performance of every computer program, good cache and TLB utilization is crucial. In numerical linear algebra libraries (such as BLAS or LAPACK), good cache utilization is achieved by explicit loop restructuring (mainly loop blocking), but this requires difficult memory pattern behavior analysis. In this paper, we represent the recursive implementation (“divide and conquer” approach) of some routines from numerical algebra libraries. This implementation leads to good cache and TLB utilization with no need to analyze the memory pattern behavior due to “natural” partition of data.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd