Multi-Condition Training for Unknown Environment Adaptation in Robust ASR Under Real Conditions
DOI:
https://doi.org/10.14311/1105Keywords:
speech recognition, environment adaptation, spectral subtraction, MLLR, noisy backgroundAbstract
Automatic speech recognition (ASR) systems frequently work in a noisy environment. As they are often trained on clean speech data, noise reduction or adaptation techniques are applied to decrease the influence of background disturbance even in the case of unknown conditions. Speech data mixed with noise recordings from particular environment are often used for the purposes of model adaptation. This paper analyses the improvement of recognition performance within such adaptation when multi-condition training data from a real environment is used for training initial models. Although the quality of such models can decrease with the presence of noise in the training material, they are assumed to include initial information about noise and consequently support the adaptation procedure. Experimental results show significant improvement of the proposed training method in a robust ASR task under unknown noisy conditions. The decrease by 29 % and 14 % in word error rate in comparison with clean speech training data was achieved for the non-adapted and adapted system, respectively.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd