Topics on n-ary Algebraic Structures
DOI:
https://doi.org/10.14311/1179Abstract
We review the basic definitions and properties of two types of n-ary structures, the Generalized Lie Algebras (GLA) and the Filippov (≡ n-Lie) algebras (FA), as well as those of their Poisson counterparts, the Generalized Poisson (GPS) and Nambu-Poisson (N-P) structures. We describe the Filippov algebra cohomology complexes relevant for the central extensions and infinitesimal deformations of FAs. It is seen that semisimple FAs do not admit central extensions and, moreover, that they are rigid. This extends Whitehead’s lemma to all n ≥ 2, n = 2 being the original Lie algebra case. Some comments onn-Leibniz algebras are also made.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd