From Gauge Anomalies to Gerbes and Gerbal Representations: Group Cocycles in Quantum Theory
DOI:
https://doi.org/10.14311/1189Abstract
In this paper I shall discuss the role of group cohomology in quantum mechanics and quantum field theory. First, I recall how cocycles of degree 1 and 2 appear naturally in the context of gauge anomalies. Then we investigate how group cohomology of degree 3 comes from a prolongation problem for group extensions and we discuss its role in quantum field theory. Finally, we discuss a generalization to representation theory where a representation is replaced by a 1-cocycle or its prolongation by a circle, and point out how this type of situations come up in the quantization of Yang-Mills theory.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd