Gause Symmetry and Howe Duality in 4D Conformal Field Theory Models
DOI:
https://doi.org/10.14311/1193Abstract
It is known that there are no local scalar Lie fields in more than two dimensions. Bilocal fields, however, which naturally arise in conformal operator product expansions, do generate infinite Lie algebras. It is demonstrated that these Lie algebras of local observables admit (highly reducible) unitary positive energy representations in a Fock space. The multiplicity of their irreducible components is governed by a compact gauge group. The mutually commuting observable algebra and gauge group form a dual pair in the sense of Howe. In a theory of local scalar fields of conformal dimension two in four space-time dimensions the associated dual pairs are constructed and classified.The paper reviews joint work of B. Bakalov, N. M. Nikolov, K.-H. Rehren and the author.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd