Time-Dependent and/or Nonlocal Representations of Hilbert Spaces in Quantum Theory
DOI:
https://doi.org/10.14311/1195Keywords:
Quantum Theory, cryptohermitian operators of observables, stable bound states, unitary scattering, quantum toboggans, supersymmetry, time-dependent models.Abstract
A few recent innovations of the applicability of standard textbook Quantum Theory are reviewed. The three-Hilbert-space formulation of the theory (known from the interacting boson models in nuclear physics) is discussed in its slightly broadened four-Hilbert-space update. Among applications involving several new scattering and bound-state problems the central role is played by models using apparently non-Hermitian (often called “crypto-Hermitian”) Hamiltonians with real spectra. The formalism (originally inspired by the topical need for a mathematically consistent description of tobogganic quantum models) is shown to admit even certain unusual nonlocal and/or “moving-frame” representations H(S) of the standard physical Hilbert space of wave functions.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd