Microstructure of the Transitional Area of the Connection of a High-temperature Ni-based Brazing Alloy and Stainless Steel AISI 321 (X6CrNiTi 18–10)
DOI:
https://doi.org/10.14311/1279Keywords:
NI 102 brazing alloy, AISI 321, wetting, chemical microanalysis, diffusion zonesAbstract
This paper presents a detailed examination of the structure of the transitional area between a brazing alloy and the parent material, the dimensions of the diffusion zones that are created, and the influence on them of a change in the brazing parameters. Connections between Ni-based brazing alloys (NI 102) with a small content of B and AISI 321 stainless steel (X6CrNiTi 18–10) were created in a vacuum (10−2 Pa) at various brazing temperatures and for various holding times at the brazing temperature. Various specimens were tested. First, the brazing alloys were wetted and the dependence of the wetting on the brazing parameters was assessed. Then a chemical microanalysis was made of the interface between the brazing alloy and the parent material. The individual diffusion zones were identified on pictures from a light microscope and REM, and their dimensions, together with their dependence on the brazing parameters, were determined.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd