Advanced Processing of Images Obtained from Wide-field Astronomical Optical Systems
DOI:
https://doi.org/10.14311/1334Keywords:
PSF, UWFC, Zernike polynomial, aberration, space variant, deconvolution algorithmAbstract
The principal aim of this paper is to present a general view of the special optical systems used for acquiring astronomical image data, commonly referred to as WFC or UWFC (Ultra Wide Field Camera), and of their transfer characteristics. UWFC image data analysis is very difficult in general, not only because the systems have so-called space variant (SV) properties. Images obtained from UWFC systems are usually incorrectly presented due to a wide range of optical aberrations and distortions. The influence of the optical aberrations increases towards the margins of the field of view. These aberrations distort the point spread function of the optical system and rapidly cut the accuracy of the measurements. This paper deals with simulation and modelling of the UWFC optical systems used in astronomy and their transfer characteristics.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd