Mechanical Properties and Fracture of an Intermetallic Alloy Fe-28Al-4Cr-0.1Ce (at %)
DOI:
https://doi.org/10.14311/138Abstract
Structure, mechanical properties and fracture of a vacuum cast and hot deformed Fe-28Al-4Cr-0.1Ce (at %) alloy were studied. The material was extruded at 1 140 °C and the samples then annealed in the temperature range from 500 to 800 °C, in the D03 and B2 ordered regions. Mechanical properties were evaluated from Vickers hardness and tensile tests. Structure was examined by optical and electron metallography. Besides coarse Ce bearing particles in the matrix, a Cr-Fe precipitate has also been found, mainly on the grain boundaries. Annealing at 700 and 800 °C leads to recovery of the dislocation structure and to the corresponding decrease of the yield stress. The fracture mechanism depends on the thermal treatment of the alloy and on the test temperature. Micromorphology of fracture surfaces was characterized by different fractographic features, including transgranular cleavage, intergranular decohesion and ductile dimple fracture. Maximum room temperature ductility of 4.3 % was achieved after hot extrusion and annealing for 2 h at 700 °C.Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd