Rational Approximation to the Solutions of Two-Point Boundary Value Problems
DOI:
https://doi.org/10.14311/1392Keywords:
nonlinear differential equations, Ginzburg-Landau, Wilson’s renormalization, Wegner-Houghton, Riccati equation, Padé-Hankel methodAbstract
We propose a method for the treatment of two-point boundary value problems given by nonlinear ordinary differential equations. The approach leads to sequences of roots of Hankel determinants that converge rapidly towards the unknown parameter of the problem. We treat several problems of physical interest: the field equation determining the vortex profile in a Ginzburg-Landau effective theory, the fixed-point equation for Wilson’s exact renormalization group, a suitably modified Wegner-Houghton fixed point equation in the local potential approximation, and a Riccati equation. We consider two models where the approach does not apply in order to show the limitations of our Padé-Hankel approach.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd