Singularities in Structural Optimization of the Ziegler Pendulum
DOI:
https://doi.org/10.14311/1400Keywords:
circulatory system, structural optimization, Ziegler pendulum, Beck column, flutter, divergence, damping, Whitney umbrellaAbstract
Structural optimization of non-conservative systems with respect to stability criteria is a research area with important applications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of conservative systems where rigorously proven optimal solutions in buckling problems have been found, for nonconservative optimization problems only numerically optimized designs have been reported. The proof of optimality in non-conservative optimization problems is a mathematical challenge related to multiple eigenvalues, singularities in the stability domain, and non-convexity of the merit functional. We present here a study of optimal mass distribution in a classical Ziegler pendulum where local and global extrema can be found explicitly. In particular, for the undamped case, the two maxima of the critical flutter load correspond to a vanishing mass either in a joint or at the free end of the pendulum; in the minimum, the ratio of the masses is equal to the ratio of the stiffness coefficients. The role of the singularities on the stability boundary in the optimization is highlighted, and an extension to the damped case as well as to the case of higher degrees of freedom is discussed.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd