Erlangen Programme at Large 3.2 Ladder Operators in Hypercomplex Mechanics
DOI:
https://doi.org/10.14311/1402Keywords:
Heisenberg group, Kirillov’s method of orbits, geometric quantisation, quantum mechanics, classical mechanics, Planck constant, dual numbers, double numbers, hypercomplex, jet spaces, hyperbolic mechanics, interference, Fock-Segal-Bargmann representatioAbstract
We revise the construction of creation/annihilation operators in quantum mechanics based on the representation theory of the Heisenberg and symplectic groups. Besides the standard harmonic oscillator (the elliptic case) we similarly treat the repulsive oscillator (hyperbolic case) and the free particle (the parabolic case). The respective hypercomplex numbers turn out to be handy on this occasion. This provides a further illustration to the Similarity and Correspondence Principle.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd