Extensions of Effect Algebra Operations
DOI:
https://doi.org/10.14311/1410Keywords:
generalized effect algebra, effect algebra, Hilbert space, densely defined linear operators, extension of operationsAbstract
We study the set of all positive linear operators densely defined in an infinite-dimensional complex Hilbert space. We equip this set with various effect algebraic operations making it a generalized effect algebra. Further, sub-generalized effect algebras and interval effect algebras with respect of these operations are investigated.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd