Numerically Optimized Uniformly Most Powerful Alphabets for Hierarchical-Decode-and-Forward Two-Way Relaying
DOI:
https://doi.org/10.14311/1438Keywords:
wireless network coding, hierarchical-decode-and-forward relaying, wireless two-way relay channel, modulation alphabet design, non-linear convex optimizationAbstract
We address the issue of the parametric performance of the Hierarchical-Decode-and-Forward (HDF) strategy in a wireless 2-way relay channel. Promising HDF, representing the concept of wireless network coding, performs well with a pre-coding strategy that requires Channel State Information (CSI) on the transceiver side. Assuming a practical case when CSI is available only on the receiver side and the channel conditions do not allow adaptive strategies, the parametrization causes significant HDF performance degradation for some modulation alphabets. Alphabets that are robust to the parametrization (denoted Uniformly Most Powerful (UMP)) have already been proposed restricting on the class of non-linear multi-dimensional frequency modulations. In this work, we focus on the general design of unrestricted UMP alphabets. We formulate an optimization problem which is solved by standard non-linear convex constrained optimization algorithms, particularly by Nelder-Mead global optimization search, which is further refined by the local interior-pointsmethod.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd