Multi-functional star tracker — future perspectives
DOI:
https://doi.org/10.14311/1486Keywords:
star tracker, horizon sensor, all-sky camera, photometry, astrometry, space variant image processing.Abstract
This paper focuses on the idea of a multi-functional wide-field star tracker (WFST) and provides a description of the current state-of-the-art in this field. The idea comes from a proposal handed in to ESA at the beginning of 2011. Star trackers (STs) usually have more than one object-lens with a small Field-of-View. They provide very precise information about the attitude in space according to consecutive evaluation of star positions. Our idea of WFST will combine the functions of several instruments, e.g. ST, a horizon sensor, and an all-sky photometry camera. WFST will use a fish-eye lens. There is no comparable product on the present-day market. Nowadays, spacecraft have to carry several instruments for these applications. This increases the weight of the instrumentation and reduces the weight available for the payload.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd