Plasma Flow and Temperature in a Gliding Reactor with Different Electrode Configurations
DOI:
https://doi.org/10.14311/1516Keywords:
gliding discharge, spectra, shape of electrodes, plasma reactor, plasma flow, temperatureAbstract
This paper deals with the plasma flow shape depending on the electrode form of a gliding discharge plasma-chemical reactor, and with the temperature distribution along the direction of the plasma flow in one specific electrode form. The shape of the electrodes and their mutual position has a significant influence on the design of a gliding discharge reactor and its applications. It is crucial to know the temperature distribution in the reactor’s chamber design and discharge application. Three configurations with model shapes of wire electrodes were therefore tested (low-divergent, circular, high-divergent) and the plasma flow was described. The experiments were performed in air at atmospheric pressure and at room temperature. In order to map the reactive plasma region of the flow we investigated the visible spectral lines that were emitted. The gas temperature was measured using an infrared camera.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd