A Neural Network Model for Predicting NOx at the Mělník 1
DOI:
https://doi.org/10.14311/1538Keywords:
dynamic neural networks, prediction, NOx emissions, signal processingAbstract
This paper presents a non-conventional dynamic neural network that was designed for real time prediction of NOx at the coal powder power plant Mělnik 1, and results on real data are shown and discussed. The paper also presents the signal preprocessing techniques, the input-reconfigurable architecture, and the learning algorithm of the proposed neural network, which was designed to handle the non-stationarity of the burning process as well as individual failures of the measured variables. The advantages of our designed neural network over conventional neural networks are discussed.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd