Diamond Films for Implantable Electrodes
DOI:
https://doi.org/10.14311/1638Keywords:
Nanocrystalline diamond, implantable electrode.Abstract
Diamond is a promising material for implantable electrodes due to its unique properties. The aim of this work is to investigate the growth of boron-doped nanocrystalline diamond (B-NCD) films by plasma-enhanced microwave chemical vapor deposition at various temperatures, and to propose optimal diamond growth conditions for implantable electrodes. We have investigated the temperature dependence (450 °C–820 °C) of boron incorporation, surface morphology and growth rate on a polished quartz plate. Surface morphology and thickness were examined by atomic force microscopy (AFM).The quality of the films in terms of diamond and non-diamond phase of carbon was investigated by Raman spectroscopy. AFM imaging showed that the size of the grains was determined mainly by the thickness of the films, and varied from an average size of 40 nm in the lowest temperature sample to an average size of 150 nm in the sample prepared at the highest temperature. The surface roughness of the measured samples varied between 10 (495 °C) and 25 nm (800 °C). The growth rate of the sample increased with temperature. We found that the level of boron doping was strongly dependent on temperature during deposition. An optimal B-NCD sample was prepared at 595 °C.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd