Flexible Multi-Electrode Array for Medical Applications
DOI:
https://doi.org/10.14311/1662Keywords:
flexible multi-electrode array, thinned silicon chip, electrical stimulation, retinal implantAbstract
A flexible multi-electrode array (MEA) with an embedded silicon chip for electrical stimulation of neurons or for recording action potentials has been manufactured and characterized. Possible improvements for medical applications using this novel approach are presented. By connecting and addressing several of these MEAs via a bus system, the number and the density of electrodes can be increased significantly. This is interesting for medical applications such as retinal implants and cochlear implants, and also for deep brain stimulators. Design and fabrication techniques for the multi-electrode array are presented. Finally, first results of mechanical stress tests are shown.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd