Geometrical Modeling of Concrete Microstructure for the Assessment of ITZ Percolation
DOI:
https://doi.org/10.14311/1674Keywords:
percolation, concrete, interfacial transition zone, aggregates, hard core – soft shell, spherical harmonic analysisAbstract
Percolation is considered to be a critical factor affecting the transport properties of multiphase materials. In the case of concrete, the transport properties are strongly dependent on the interfacial transition zone (ITZ), which is a thin layer of cement paste next to aggregate particles. It is not computationally simple to assess ITZ percolation in concrete, as the geometry and topology of this phase is complex. While there are many advanced models that analyze the behavior of concrete, they are mostly based on the use of spherical or ellipsoidal shapes for the geometry of the aggregate inclusions. These simplified shapes may become unsatisfactory in many simulations, including the assessment of ITZ percolation. This paper deals with geometrical modeling of the concrete microstructure using realistic shapes of aggregate particles, the geometry of which is represented in terms of spherical harmonic expansion. The percolation is assessed using the hard core – soft shell model, in which each randomly-placed aggregate particle is surrounded by a shell of constant thickness representing ITZ.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd