Hierarchical Modeling of Mastic Asphalt in Layered Road Structures Based on the Mori-Tanaka Method
DOI:
https://doi.org/10.14311/1676Keywords:
asphalt mixture, micromechnical homogenization, multiscale modeling, Mori-Tanaka method, statistically equivalent periodic unit cell, virtual testing toolAbstract
We present an application of the Mori-Tanaka micromechanical model for a description of the highly nonlinear behavior of asphalt mixtures. This method is expected to replace an expensive finite element-based fully-coupled multi-scale analysis while still providing useful information about local fields on the meso-scale that are not predictable by strictly macroscopic simulations. Drawing on our recent results from extensive experimental and also numerical investigations this paper concentrates on principal limitations of the Mori-Tanaka method, typical of all two-point averaging schemes, when appliedto material systems prone to evolving highly localized deformation patterns such as a network of shear bands. The inability of the Mori-Tanaka method to properly capture the correct stress transfer between phases with increasing compliance of the matrix phase is remedied here by introducing a damage like parameter into the local constitutive equation of reinforcements (stones) to control an amount of stress taken by this phase. A deficiency of the Mori-Tanaka method in the prediction of creep response is also mentioned particularly in the light of large scale simulations. A comparison with the application of macroscopic homogenized constitutive model for an asphalt mixture is also presented.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd