The Point Spread Function Variations inside Wide-field Astonomical Images
DOI:
https://doi.org/10.14311/1696Keywords:
astronomy, wide-field imaging, wavelet transform, a trous, fittingAbstract
The Point Spread Function (PSF) of the astronomical imaging system is usually approximated by a Gaussian or Moffat function. For simplification, the astronomical imaging system is considered to be time and space invariant. This means that invariable PSF within an exposed image is assumed. If real wide-field imaging systems are considered, this presumption is not fulfilled. In real systems, stronger optical aberrations are expected (especially coma) at greater distances from the center of the captured image. This impacts the efficiency of stellar astrometry and photometry algorithms, so it is necessary to know the PSF variation. In this paper, we perform the first step toward assigning PSF changes: we study the dependence of the Moffat function fitting parameters (FWHM and the atmospheric scattering coefficient ) on the position of a stellar object.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd