Spectral Analysis of Schrödinger Operators with Unusual Semiclassical Behavior
DOI:
https://doi.org/10.14311/1801Keywords:
Schrödinger operator, discrete spectrum, Lieb-Thirring inequality, cusp-shaped regions, geometrically induced spectrumAbstract
In this paper we discuss several examples of Schrödinger operators describing a particle confined to a region with thin cusp-shaped ‘channels’, given either by a potential or by a Dirichlet boundary; we focus on cases when the allowed phase space is infinite but the operator still has a discrete spectrum. First we analyze two-dimensional operators with the potential |xy|p - ?(x2 + y2)p/(p+2)where p?1 and ??0. We show that there is a critical value of ? such that the spectrum for ??crit it is unbounded from below. In the subcriticalcase we prove upper and lower bounds for the eigenvalue sums. The second part of work is devoted toestimates of eigenvalue moments for Dirichlet Laplacians and Schrödinger operators in regions havinginfinite cusps which are geometrically nontrivial being either curved or twisted; we are going to showhow these geometric properties enter the eigenvalue bounds.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd