THE SHMUSHKEVICH METHOD FOR HIGHER SYMMETRY GROUPS OF INTERACTING PARTICLES
DOI:
https://doi.org/10.14311/AP.2013.53.0395Abstract
About 60 years ago, I. Shmushkevich presented a simple ingenious method for computing the relative probabilities of channels involving the same interacting multiplets of particles, without the need to compute the Clebsch-Gordan coefficients. The basic idea of Shmushkevich is “isotopic non-polarization” of the states before the interaction and after it. Hence his underlying Lie group was SU(2). We extend this idea to any simple Lie group. This paper determines the relative probabilities of various channels of scattering and decay processes following from the invariance of the interactions with respect to a compact simple a Lie group. Aiming at the probabilities rather than at the Clebsch-Gordan coefficients makes the task easier, and simultaneous consideration of all possible channels for given multiplets involved in the process, makes the task possible. The probability of states with multiplicities greater than 1 is averaged over. Examples with symmetry groups O(5), F(4), and E(8) are shown.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd