COULOMB SCATTERING IN NON-COMMUTATIVE QUANTUM MECHANICS
DOI:
https://doi.org/10.14311/AP.2013.53.0427Abstract
Recently we formulated the Coulomb problem in a rotationally invariant NC configuration space specified by NC coordinates xi, i = 1, 2, 3, satisfying commutation relations [xi, xj ] = 2iλεijkxk (λ being our NC parameter). We found that the problem is exactly solvable: first we gave an exact simple formula for the energies of the negative bound states Eλn < 0 (n being the principal quantum number), and later we found the full solution of the NC Coulomb problem. In this paper we present an exact calculation of the NC Coulomb scattering matrix Sλj (E) in the j-th partial wave. As the calculations are exact, we can recognize remarkable non-perturbative aspects of the model: 1) energy cut-off — the scattering is restricted to the energy interval 0 < E < Ecrit = 2/λ2; 2) the presence of two sets of poles of the S-matrix in the complex energy plane — as expected, the poles at negative energy EIλn = Eλn for the Coulomb attractive potential, and the poles at ultra-high energies EIIλn = Ecrit − Eλn for the Coulomb repulsive potential. The poles at ultra-high energies disappear in the commutative limit λ→0.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd