MODELING JET INTERACTIONS WITH THE AMBIENT MEDIUM
DOI:
https://doi.org/10.14311/AP.2013.53.0683Abstract
Recent high-resolution (see, e.g., [13]) observations of astrophysical jets reveal complex structures apparently caused by ejecta from the central engine as the ejecta interact with the surrounding interstellar material. These observations include time-lapsed “movies” of both AGN and microquasars jets which also show that the jet phenomena are highly time-dependent. Such observations can be used to inform models of the jet–ambient-medium interactions. Based on an analysis of these data, we posit that a significant part of the observed phenomena come from the interaction of the ejecta with prior ejecta as well as interstellar material. In this view, astrophysical jets interact with the ambient medium through which they propagate, entraining and accelerating it. We show some elements of the modeling of these jets in this paper, including energy loss and heating via plasma processes, and large scale hydrodynamic and relativistic hydrodynamic simulations.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd