THE NA62 EXPERIMENT AT CERN AND THE MEASUREMENT OF THE ULTRA-RARE DECAY K+-π+v¯v
DOI:
https://doi.org/10.14311/AP.2013.53.0814Abstract
The NA62 experiment at CERN aims at the very challenging task of measuring with 10% relative error the Branching Ratio of the ultra-rare decay of the K+ into π+ ν¯ν which is expected to occur only in about 8 out of 1011 Kaon decays. This will be achieved by means of an intense hadron beam, an accurate kinematical reconstruction and a redundant veto system for identifying and suppressing all spurious events. Good resolution on the missing mass in the decay is achieved using a high-resolution beam tracker to measure the kaon momentum and with a spectrometer equipped with straw tubes operating in vacuum. Hermetic veto (up to 50 mrad) of the photon from π0 decays is achieved with a combination of large angle veto (with a creative reuse of the old OPAL lead glass blocks), the NA48 liquid Krypton calorimeter and two small angle calorimeters to cover the angle down to zero. The identification of the muons and the consequent veto is performed by a fast hodoscope plane (used in the first level of the trigger to reduce the rate) and by a 17 meter, neon-filled RICH counter which is able to separate pions and muons in the momentum interval between 15 and 35 GeV. Particle identification in the beam (K+ separation) is achieved with an H2 differential Cherenkov counter. The trigger for the experiment is based on a multilevel structure with a first level implemented in the readout boards and with the subsequent level done in the software. The aim is to reduce the 10MHz level zero rate to a few kHz sent to the CERN computing centre. Studies are underway to use GPU boards in some key point of the trigger system to improve the performance.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd