QUANTIFICATION OF RESPIRATORY SINUS ARRHYTHMIA WITH HIGH-FRAMERATE ELECTRICAL IMPEDANCE TOMOGRAPHY
DOI:
https://doi.org/10.14311/AP.2013.53.0854Abstract
Respiratory Sinus Arrhythmia, the variation in the heart rate synchronized with the breathing cycle, forms an interconnection between cardiac-related and respiratory-related signals. It can be used by itself for diagnostic purposes, or by exploiting the redundancies it creates, for example by extracting respiratory rate from an electrocardiogram (ECG). To perform quantitative analysis and patient specific modeling, however, simultaneous information about ventilation as well as cardiac activity needs to be recorded and analyzed. The recent advent of medically approved Electrical Impedance Tomography (EIT) devices capable of recording up to 50 frames per second facilitates the application of this technology. This paper presents the automated selection of a cardiac-related signal from EIT data and quantitative analysis of this signal. It is demonstrated that beat-to-beat intervals can be extracted with a median absolute error below 20 ms. A comparison between ECG and EIT data shows a variation in peak delay time that requires further analysis. Finally, the known coupling of heart rate variability and tidal volume can be shown and quantified using global impedance as a surrogate for tidal volume.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd