EFFECT OF SLIP VELOCITY ON THE PERFORMANCE OF A SHORT BEARING LUBRICATED WITH A MAGNETIC FLUID
DOI:
https://doi.org/10.14311/AP.2013.53.0890Abstract
This paper aims at analyzing the effect of velocity slip on the behavior of a magnetic fluid based infinitely short hydrodynamic slider bearing. Solving the Reynolds’ equation, the expression for pressure distribution is obtained. In turn, this leads to the calculation of the load carrying capacity. Further, the friction is also computed. It is observed that the magnetization paves the way for an overall improved performance of the bearing system. However the magnetic fluid lubricant fails to alter the friction. It is established that the slip parameter needs to be kept at minimum to achieve better performance of the bearing system, although the effect of the slip parameter on the load carrying capacity is in most situations, negligible. It is found that for large values of the aspect ratio, the effect of slip is increasingly significant. Of course, the aspect ratio plays a crucial role in this improved performance. Lastly, it is established that the bearing can support a load even in the absence of flow, which does not happen in the case of a conventional lubricant.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd