Actual Optical and Thermal Performance of Photovoltaic Modules
DOI:
https://doi.org/10.14311/204Keywords:
solar radiation, reflection losses, radiation shape factor, radiative surface area, temperature distribution, emissivity, isotropic model, Hay and Klucher's anisotropic modelsAbstract
Field testing is costly, time-consuming and depends heavily on prevailing weather conditions. Adequate security and weather protection must also be provided at the test site. Delays can be caused due to bad weather and system failures. To overcome these problems, a photovoltaic array simulation may be used. In any simulation scheme involving photovoltaic systems, one important choice is the selection of a mathematical model.In the literature several approaches to the problem have been made. Most procedures designed for this purpose are based on analytical descriptions of the physical mechanisms inside the solar cell that can be represented by a circuit diagram with discrete components, like a two-exponential model. Such simulators have some merits. However, their limited flexibility in readily simulating the influence of solar radiation, temperature and various array parameters is a serious drawback that has been noted. To get more accurate results in predicting the actual performance of photovoltaic modules, the parameters influencing incoming (optical parameters) and outgoing power flow (electrical and thermal parameters) were investigated by simulation and by some verifying experiments, to get a closer insight into the response behavior of this element, and to estimate the overall performance as well as optimization of the parameters.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd