CURRENT WAYS TO HARVEST ENERGY USING A COMPUTER MOUSE
DOI:
https://doi.org/10.14311/AP.2014.54.0019Abstract
This paper deals with the idea of an energy harvesting (EH) system that uses the mechanical energy from finger presses on the buttons of a computer mouse by means of a piezomaterial (PVF2). The piezomaterial is placed in the mouse at the interface between the button and the body. This paper reviews the parameters of the PVF2 piezomaterial and tests their possible implementation into EH systems utilizing these types of mechanical interactions. The paper tests the viability of two EH concepts: a battery management system, and a semi-autonomous system. A statistical estimate of the button operations is performed for various computer activities, showing that an average of up to 3300 mouse clicks per hour was produced for gaming applications, representing a tip frequency of 0.91 Hz on the PVF2 member. This frequency is tested on the PVF2 system, and an assessment of the two EH systems is reviewed. The results show that fully autonomous systems are not suitable for capturing low-frequency mechanical interactions, due to the parameters of current piezomaterials, and the resulting very long startup phase. However, a hybrid EH system which uses available power to initiate the circuit and eliminate the startup phase may be explored for future studies.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd