TRACKING DOWN LOCALIZED MODES IN PT-SYMMETRIC HAMILTONIANS UNDER THE INFLUENCE OF A COMPETING NONLINEARITY
DOI:
https://doi.org/10.14311/AP.2014.54.0079Abstract
The relevance of parity and time reversal (PT)-symmetric structures in optical systems has been known for some time with the correspondence existing between the Schrödinger equation and the paraxial equation of diffraction, where the time parameter represents the propagating distance and the refractive index acts as the complex potential. In this paper, we systematically analyze a normalized form of the nonlinear Schrödinger system with two new families of PT-symmetric potentials in the presence of competing nonlinearities. We generate a class of localized eigenmodes and carry out a linear stability analysis on the solutions. In particular, we find an interesting feature of bifurcation characterized by the parameter of perturbative growth rate passing through zero, where a transition to imaginary eigenvalues occurs.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd