THE COUPLED-CLUSTER APPROACH TO QUANTUM MANY-BODY PROBLEM IN A THREE-HILBERT-SPACE REINTERPRETATION
DOI:
https://doi.org/10.14311/AP.2014.54.0085Abstract
The quantum many-body bound-state problem in its computationally successful coupled cluster method (CCM) representation is reconsidered. In conventional practice one factorizes the groundstate wave functions |Ψ) = eS |Φ) which live in the “physical” Hilbert space H(P) using an elementary ansatz for |Φi plus a formal expansion of S in an operator basis of multi-configurational creation operators C+. In our paper a reinterpretation of the method is proposed. Using parallels between the CCM and the so called quasi-Hermitian, alias three-Hilbert-space (THS), quantum mechanics, the CCM transition from the known microscopic Hamiltonian (denoted by usual symbol H), which is self-adjoint in H(P), to its effective lower-case isospectral avatar h = e−SHeS, is assigned a THS interpretation. In the opposite direction, a THS-prescribed, non-CCM, innovative reinstallation of Hermiticity is shown to be possible for the CCM effective Hamiltonian h, which only appears manifestly non-Hermitian in its own (“friendly”) Hilbert space H(F). This goal is achieved via an ad hoc amendment of the inner product in H(F), thereby yielding the third (“standard”) Hilbert space H(S). Due to the resulting exact unitary equivalence between the first and third spaces, H(F) ∼ H(S), the indistinguishability of predictions calculated in these alternative physical frameworks is guaranteed.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd