SEMICLASSICAL ASYMPTOTICS OF EIGENVALUES FOR NON-SELFADJOINT OPERATORS AND QUANTIZATION CONDITIONS ON RIEMANN SURFACES
DOI:
https://doi.org/10.14311/AP.2014.54.0101Abstract
This paper reports a study of the semiclassical asymptotic behavior of the eigenvalues of some nonself-adjoint operators that are important for applications. These operators are the Schrödinger operator with complex periodic potential and the operator of induction. It turns out that the asymptotics of the spectrum can be calculated using the quantization conditions. These can be represented as the condition that the integrals of a holomorphic form over the cycles on the corresponding complex Lagrangian manifold, which is a Riemann surface of constant energy, are integers. In contrast to the real case (the Bohr–Sommerfeld–Maslov formulas), in order to calculate a chosen spectral series, it is sufficient to assume that the integral over only one of the cycles takes integer values, and different cycles determine different parts of the spectrum.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd