IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES
DOI:
https://doi.org/10.14311/AP.2014.54.0240Abstract
The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI) engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR). The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM) approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd