ALTERNATIVE SELECTION FUNCTIONS FOR INFORMATION SET MONTE CARLO TREE SEARCH
DOI:
https://doi.org/10.14311/AP.2014.54.0333Abstract
We evaluate the performance of various selection methods for the Monte Carlo Tree Search algorithm in two-player zero-sum extensive-form games with imperfect information. We compare the standard Upper Confident Bounds applied to Trees (UCT) along with the less common Exponential Weights for Exploration and Exploitation (Exp3) and novel Regret matching (RM) selection in two distinct imperfect information games: Imperfect Information Goofspiel and Phantom Tic-Tac-Toe. We show that UCT after initial fast convergence towards a Nash equilibrium computes increasingly worse strategies after some point in time. This is not the case with Exp3 and RM, which also show superior performance in head-to-head matches.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd