A Low-complexity Wavelet Based Algorithm for Inter-frame Image Prediction
DOI:
https://doi.org/10.14311/326Keywords:
video compression, motion estimation, wavelet transform, multi-resolutionAbstract
In this paper, a novel multi-resolution variable block size algorithm (MRVBS) is introduced. It is based on: (1) Using the wavelet components of the seven sub-bands from two layers of wavelet pyramid in the lowest resolution; (2) Performing a block matching estimation within a nine-block only in each sub-band of the lower layer; (3) Scaling the estimated motion vectors and using them as a new search center for the finest resolution. The motivation for using the multi-resolution approach is the inherent structure of the wavelet representation. A multi-resolution scheme significantly reduces the searching time, and provides a smooth motion vector field. The approach presented in this paper providing an accurate motion estimate even in the presence of single and mixed noise. As a part of this framework, a comparison of the Full search (FS) algorithm, the three-step search (TSS) algorithm and the new algorithm (MRVBS) is presented. For a small addition in computational complexity over a simple TSS algorithm, the new algorithm achieves good results in the presence of noise.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd