ADAPTIVE DISTRIBUTION OF A SWARM OF HETEROGENEOUS ROBOTS
DOI:
https://doi.org/10.14311/APP.2016.56.0067Keywords:
heterogeneous multi-robot systems, swarm robotics, stochastic systems, task allocationAbstract
We present a method that distributes a swarm of heterogeneous robots among a set of tasks that require specialized capabilities in order to be completed. We model the system of heterogeneous robots as a community of species, where each species (robot type) is defined by the traits (capabilities) that it owns. Our method is based on a continuous abstraction of the swarm at a macroscopic level as we model robots switching between tasks. We formulate an optimization problem that produces an optimal set of transition rates for each species, so that the desired trait distribution is reached as quickly as possible. Since our method is based on the derivation of an analytical gradient, it is very efficient with respect to state-of-the-art methods. Building on this result, we propose a real-time optimization method that enables an online adaptation of transition rates. Our approach is well-suited for real-time applications that rely on online redistribution of large-scale robotic systems.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd