ON CONNECTING WEYL-ORBIT FUNCTIONS TO JACOBI POLYNOMIALS AND MULTIVARIATE (ANTI)SYMMETRIC TRIGONOMETRIC FUNCTIONS
DOI:
https://doi.org/10.14311/AP.2016.56.0283Keywords:
Weyl group orbit functions, Chebyshev polynomials, Jacobi polynomials, (anti)symmetric trigonometric functionsAbstract
The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of A1 and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of A2 and a specific version of two variable Jacobi polynomials. The connection with recently studied G2-polynomials is established. Formulas for connection between the four types of orbit functions of Bn or Cn and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd