ON THE CONSTRUCTION OF PARTIAL DIFFERENCE SCHEMES II: DISCRETE VARIABLES AND SCHWARZIAN LATTICES
DOI:
https://doi.org/10.14311/AP.2016.56.0236Keywords:
partial differential and difference equations, discretization, the Clairaut--Schwarz--Young theoremAbstract
In the process of constructing invariant difference schemes which approximate partial differential equations we write down a procedure for discretizing a partial differential equation on an arbitrary lattice. An open problem is the meaning of a lattice which does not satisfy the Clairaut–Schwarz–Young theorem. To analyze it we apply the procedure on a simple example, the potential Burgers equation with two different lattices, an orthogonal lattice which is invariant under the symmetries of the equation and satisfies the commutativity of the partial difference operators and an exponential lattice which is not invariant and does not satisfy the Clairaut–Schwarz–Young theorem. A discussion on the numerical results is presented showing the different behavior of both schemes for two different exact solutions and their numerical approximations.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd