New Phase Shifting Algorithms Insensitive to Linear Phase Shift Errors
DOI:
https://doi.org/10.14311/376Keywords:
noncontact deformation measurement, phase calculation algorithms, error analysisAbstract
This article describes and analyses multistep algorithms for evaluating of the wave field phase in interferometric measurements using the phase shifting technique. New phase shifting algorithms are proposed, with a constant but arbitrary phase shift between captured frames of the intensity of the interference field. The phase evaluation process then does not depend on linear phase shift errors. A big advantage of the described algorithms is their ability to determine the phase shift value at every point of the detector plane. A detailed analysis of these algorithms with respect to main factors that affect interferometric measurements is then carried out. The dependency of these algorithms on phase shift values is also studied several phase calculation algorithms are proposed. These are compared with respect to the resulting phase errors.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd