CALCULATIONS OF ION TRAJECTORIES AT MAGNETOPLASMA SEPARATION AND EXPERIMENTS WITH POLYATOMIC GASES
DOI:
https://doi.org/10.14311/AP.2017.57.0071Keywords:
spent nuclear fuel, plasma reprocessing, uranium, fission productsAbstract
Calculated trajectories of ions with different masses, indicating the possibility of a mixture separation, are obtained. Comparative experiments for plasma of monatomic and polyatomic gases (Ar, N2, CO2), upon combination of pulsed discharge with a stationary one with incandescent cathode, are carried out. The oscillograms of discharge current and voltage at low emission currents and a constant energy input show that energy is spent on other processes different from ionization. With an increase of emission current, the nonlinear character of the discharge current and voltage, which may be indicative of the role of dissociation and vibrational levels in energy consumption, is observed. In addition, there is connection between the number of atoms in molecule and the values of maximum discharge current and the pressure of injected gas.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd