MAGNETRON SPUTTERING WITH HOT SOLID TARGET: THERMAL PROCESSES AND EROSION
DOI:
https://doi.org/10.14311/AP.2016.56.0425Keywords:
magnetron sputtering, hot target, evaporation, high rate deposition.Abstract
This work focuses on erosion and thermal processes taking place on the surface of the titanium target in magnetron sputtering. The study was carried out using magnetron sputtering systems (MSS) with different thermal insulation target types from the magnetron body. It was found that the presence of an evaporation component allows the rate of removal of atoms from the surface of a solid target to be increased with limited thermal conduction. A mathematical simulation was used to evaluate the contribution of evaporation to the increase in the coating deposition rate for complete and partial thermal insulation. It was found that non-uniformity of the direct-axis component of the magnetic induction vector helps to localize the heating. also increases the evaporation rate on the surface of the target. It was proved that local evaporation including sublimations on the surface of a hot target is a significant factor in increasing the coating deposition rate. Due to this mechanism, the coating deposition rate can be increased 5 times for Ti in comparison with fully cooled targets. This result can be applied for direct current magnetrons and also for pulsed systems. It was also found that evaporation increased the energy efficiency of the target erosion. The most suitable metals were selected for obtaining high-intensity emission of atoms from a solid target.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd