TEARING MODES GROWTH RATE AMPLIFICATION DUE TO FINITE CURRENT RELAXATION
DOI:
https://doi.org/10.14311/AP.2017.57.0032Keywords:
tearing modes, current relaxation, magnetic islands, magnetic reconnectionAbstract
In this work, we explore the influence of perturbative wavelengths, shorter than those usually considered, on the growth rate γ of the tearing modes. Thus, we adopt an extended form of Ohm’s law, which includes a finite relaxation time for the current density, due to inertial effects of charged species. In the long wavelength limit, we observe the standard γ of the tearing modes. However, in the short wavelength limit, we show that γ does not depend on the fluid resistivity any longer. Actually, we find out that γ now scales with the electron number density ne as γ ~ ne−3/2. Therefore, through a suitable combination of both limiting results, we show that the standard γ can be substantially amplificated, even by moderate shortenings of perturbative wavelengths. Further developments of our theory may contribute to the explanation of the fast magnetic reconnection of field lines, as observed in astrophysical plasmas.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd