PRELIMINARY STUDY ON COMBUSTION AND OVERALL PARAMETERS OF SYNGAS FUEL MIXTURES FOR SPARK IGNITION COMBUSTION ENGINE
DOI:
https://doi.org/10.14311/AP.2017.57.0038Keywords:
spark-ignition piston combustion engine, alternative gaseous fuel, syngas, combustion modellingAbstract
This paper presents a numerical study on a group of alternative gaseous fuels – syngases, and their use in the spark-ignition internal combustion engine Lombardini LGW 702. These syngas fuel mixtures consist mainly of hydrogen and carbon monoxide, together with inert gases. An understanding of the impact of the syngas composition on the nature of the combustion process is essential for the improvement of the thermal efficiency of syngas-fuelled engines. The paper focuses on six different syngas mixtures with natural gas as a reference. The introduction of the paper goes through some recent trends in the field of the alternative gaseous fuels, followed by a discussion of the objectives of our work, together with the selection of mixtures. Important part of the paper is dedicated to the experimental and above all to the numerical methods. Two different simulation models are showcased: the single-cylinder ‘closed-volume’ combustion analysis model and the full-scale LGW 702 model; all prepared and tuned with the GT-Power software. Steady-state engine measurements are followed by the combustion analysis, which is undertaken to obtain the burn rate profiles. The burn rate profiles, in the form of the Vibe formula, are than inserted into the in-house developed empirical combustion model based on Csallner-Woschni recalculation formulas. Its development is described in the scope as well. The full-scale LGW 702 simulation model, together with this empirical combustion model, is used for the evaluation of engine overall performance parameters, running on gaseous fuel mixtures. The analysis was carried out only under the conditions of engine on full load and the stoichiometric mixture.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd