ALGEBRAIC DESCRIPTION OF SHAPE INVARIANCE REVISITED
DOI:
https://doi.org/10.14311/AP.2017.57.0446Keywords:
exactly solvable models, shape invariance, representation theoryAbstract
We revisit the algebraic description of shape invariance method in one-dimensional quantum mechanics. In this note we focus on four particular examples: the Kepler problem in flat space, the Kepler problem in spherical space, the Kepler problem in hyperbolic space, and the Rosen-Morse potential problem. Following the prescription given by Gangopadhyaya et al., we introduce new nonlinear algebraic systems and solve the bound-state problems by means of representation theory.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd