LAMBERT FUNCTION METHODs TO STUDY LASER DYNAMICS WITH TIME-DELAYED FEEDBACK
DOI:
https://doi.org/10.14311/AP.2017.57.0399Keywords:
time-delayed differential equations, Lambert function, lasersAbstract
Time-delayed differential equations arise frequently in the study of nonlinear dynamics of lasers with optical feedback and because the analytical solution of such equations can be intractable, one resorts to numerical methods. In this manuscript, we show that under some conditions, the rate equations model that is used to model semiconductor lasers with feedback can be analytically solved by using the Lambert W function. In particular, we discuss the conditions under which the coupled rate equations for the intracavity electric field and carrier inversion can be reduced to a single equation for the field, and how this single rate equation can be cast in a form that is amenable to the use of the Lambert W function.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd