THERMOCHEMICAL CALCULATIONS USING SERVICEORIENTED ARCHITECTURE IN THE WEB SERVICE FORM
DOI:
https://doi.org/10.14311/AP.2018.58.0026Keywords:
thermochemical calculation, chemical reaction, service-oriented architecture, web serviceAbstract
The subject of this article is the service-oriented architecture utilization in the design and implementation of a web service that is intended to perform selected thermochemical calculations for chemical reactions. Computing functions allow the chemical reaction calculations, such as molar heat capacity, enthalpy, entropy and Gibbs free energy. In the next part, there is a description of each function, the method of service calling in the client application and the structure specification of outputs and error states of the service. In addition to computing functions, the web service also has a group of three information functions that characterize the purpose of the web service and its parameters, provide in tabular form a list of all web service functions and a list of all error states of the web service. The final section describes the presentation web service application with a demonstration of the specific calculations, the possibilities of using the service, and a further solution treatment.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
4. ddd